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In this paper, a simple and intuitive proof  of  the theorem K = ]det N(G)[  
[1, 2] is given. 
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1. Introduction 

The enumeration of Kekul6 structures of benzenoid hydrocarbons has fascinated 
many researchers [1-42]. It has been shown that very large benzenoid hydrocar- 
bons can be examined by using theories that require only counts of  Kekul~ 
structures as input [43-47]. The considerable number  of  papers published [18-42] 
shows that the interest in this topic has increased substantially during the last 
few years. 

In the present paper,  we give a simple and intuitive proof  of  the recent result of  
John and Sachs [1, 2] (K  = Idet N(G)l). 

2. Definitions 

HFgraph [48, 49]. A finite planar connected graph in an infinite regular hexagonal 
lattice with vertical edges is called a honeycomb fragment graph (or simply, a 
HF graph). 

KHF graph [48, 49]. I f  a HF graph is Kekul6an, it is called.a K H F  graph. For 
a HF graph G(V, E), V(G) is its vertex set and E(G) is its edge set. Every edge 
of G has a length 1. Denote the number of elements in the two sets by IV(G)] 
and [E(G)[,  respectively. Colour the vertices of  the hexagonal lattice black " . "  
and white "o"  alternatively such that any two neighbouring vertices have different 
colour and every vertical edge has a black upper  vertex and a white lower vertex. 
Thus, every vertex of a HF  graph on the coloured hexagonal lattice is also 
coloured. For example, some HF graphs are shown in Fig. 1. 
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Fig. 1. HF graphs; peaks and valleys 
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Peaks and valleys [1, 2, 48, 50]. Consider a HF  graph G. A peak is defined as a 
vertex lying above all its first neighbours, and a valley is a vertex lying below all 
its first neighbours (see Fig. 1). The peaks of  G will be denoted by Pl, P2, �9 �9  Pg, 
and the valleys of  G by vl, v2, �9 �9  Vh. 

P-V path [1, 2, 48, 50]. A P-V path in a HF graph is a path issuing from a peak, 
running monotonously down, and terminating in a valley. 

Conjugated P-V path (or perfect P-V path) [1, 2, 48, 49]. In a given Kekul~ 
structure of  a K H F  graph, if a P-V path with h vertices has hi2 conjugated 
double bond edges, then it is called a conjugated P-V path. In [50], Sachs 
established an one-to-one correspondence between Kekul6 structures and perfect 
P-V path systems in hexagonal systems. 

In [48], we proposed the P-V network flow method, which uses the maximum 
flow of the P-V network o f a  HF  graph to determine whether a HF  graph possesses 
Kekul~ structures or not. We should note that a P-V path must have an odd path 
length, and so a path issuing from the peak p~ and terminating in the valley vj 
has a path length 2 I  u -  1, where I u is the number of the diagonal edges in the 
P-V path. 

If/~j is an even number  (i.e. (-1)/iJ = 1), then the P-V path is called an even P-V 
path, and if I u is an odd number  (i.e. (-1)zu = -1 ) ,  then the P-V path is called 
an odd P-V path; (-1)/,J is called the odd-even index of the P-V path. Obviously, 
all the possible P-V paths issuing from the peak p~ and terminating in the valley 
vj have the same path length 21 o -  1 and the same odd-even index (-1)~u. 

P-V matrix N ( G )  of G. Consider a HF graph G having peaks Pl, P 2 , . . . ,  Pk and 
valleys vl, v 2 , . . . ,  Vh. Its P-V matrix is a k x  h matrix N ( G )  with elements n u 
(i = 1, 2 , . . . ,  k; j = 1, 2 , . . . ,  h) equal to the number  of the possible P-V paths 
issuing from p~ (i = 1, 2 , . . . ,  k) and terminating in vj(j = 1, 2 , . . . ,  h). For example, 
in Fig. 2, the P-V matrix N ( G )  is [166] 

N ( G ) =  2 2 1 (1) 

1 0 2 

The value of n o can very easily be determined either by computer or by hands, 
with the following method (see Fig. 2). Let the valleys have the values 

Vs= ( s r  
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and every other  vertex have a value equal  to the sum of  the values of  the vertices 
which are be low and adjacent  to it. The obta ined  peak  values are merely  the 
values n~j o f  the elements  in the j t h  co lumn of  N(G).  

In  the case of  h # k, by entering addi t ional  rows (or columns)  of  zero elements,  
we can make  the k • h P -V  matr ic  N(G) become  a t x t (t = max  (k, h)) square 
matrix.  F rom now on, any  P -V  matr ix  will be considered as a square  one. 

Now,  let us define ano ther  matr ix  W(G) which has the elements  

wo=(-1)1vxno, ( i = l , 2 , . . . , t ; j = l , 2 , . . . , t ) ,  (3) 

where  the n~js are the P -V  matr ix  elements,  and  ( - 1 ) %  is the odd-even  index of  
the P -V  pa th  issuing f rom pi and terminat ing in vj (in the case of  n~ = 0, I~j is 
arbitrary).  

3. D e t e r m i n a n t  o f  P - V  matr ix  and the proof  o f  J o h n - S a c h s  theorem 

L e m m a .  For a H F  graph, Idet N(G)I  = ]det W(G)I. 

Proof Suppose  that  all the elements  nij in a P -V  matr ix  are not equal  to 0. 
Cons ider  two P -V  paths  pivj and pf,vj which have a c o m m o n  end vj. The length 
difference of  the two P -V  paths doesn ' t  depend  o n j ( j  = 1, 2 , . . . ,  t). Nei ther  does 
the value I i j - I v j :  the cor responding  elements  in any two rows (say the ith and 
the i ' - th  rows) of  W ( G )  have the same sign (if ( -  1 ) hi~ (_  1) h,j = 1) or  the opposi te  
sign (if (-1)~,J/(-1)z,'J = - 1 ) .  

Al though any zero elements  (n o = 0) in the matr ix  W ( G )  have arbi t rary signs, 
by selecting suitable signs for  them we can also make  (-1)z~J/(-1)h 'J  in depend  
o f j .  So we have 

( - 1 ) h i / ( - 1 )  l''j : ( - 1 )  ' ' - ' ' ~  ( j  = 1, 2 , . . . ,  t). (4) 

Let I ' =  1. Equa t ion  (4) becomes  

(-1)t~J = ( - 1 )  q '+ ( " - r l ' )  (i = 1 , 2 , . . . ,  t; j =  1,2 . . . .  , t) 



392 He Wenjie and He Wenchen 

and thus, 
[ ( - l )q ,n l l  ( - - 1 ) I 1 2 n 1 2  . . .  ( -1 )Gnl t  

det W ( G ) =  [ (-1)~2'n21 (-1)'~n22 ... (-1)'2'n2, 

I 
I(-1)'~,n,1 (-1)1,2n,2 ... (-1)Gnt, 

(--1)l l t+(ll t- l lx)nll  (--1)llz+(l,t-lll)n12 

[(_l)I11+(I , l - l , , )nt l  (-1)I,2+(I,1-111)nt2 

[(-1)q'n11 

( , G)-t~,x'l(-1)I"n21 = (-1) G = , 

I 
I ( -1 ) ' , ,n .  

Hence 
h i 2  �9 . . nit  ! 

d e t W ( G ) = A •  n22 "'" n2~ = 

ntl . . . . . .  ntt ] 
where 

A = ( - 1 )  (xl-I/il+Y'~-I llj)-t 'll  = ( - -1 )  y~-I l'i 

John-Sachs theorem. For a HF graph G, 

K ( G )  = [det N(G)[, 

where K ( G) is the number of kekuld structures of (3. 

�9 .. ( --  1) 11,+(111-1t~) nl t I 

"'" ( -1) t '+G'-I")nt ,  I 

(-1)',~n~2 ... ( - a ) " n ,  I 
(-1)"2n22 . . . . . . . . .  "'" (-1)Gn2t]  

( - -  1),znz2 . . .  (-1)', n./ 

A x  (det N( G) ) ,  

(5) 

Proof If in the graph G, the number of the peaks is different from that of the 
valleys, we have ]det N(G)] = 0; obviously, Eq. (5) holds [49, 50]. 

Now let us consider a HF graph G in which the number of the peaks is equal 
to the number of the valleys. From [49, 50], the number of the white vertices 
must be equal to the number of the black vertices. According to Ham's result [5] 
which was first proved by Cvetkovi6 DM, Gutman I and Trinajsti6 N (see [13]), 

K ( G )  = [det M(G)[,  (6) 

where M ( G )  is a g x  g matrix with the elements: 

{10 (if w~ is adjacent to bj) 
m~ = (if w~ is not adjacent to bj) 

( i=  1 , 2 , . . . ,  g; j =  1, 2 , . . .  g; g=]V(G)I /2) .  

For convenience we will adopt the following conventions. 

1. The peaks as well as valleys are labelled 1, 2 , . . . ,  t, and the other white (black) 
vertices are labelled t+  1, t + 2 , . . . ,  g (g = ]V(G)I/2). 

2. The labels t + 1, t + 2 , . . . ,  g of the white vertices which are not peaks are given 
by sweeping from the left to the right and from top to bottom. 



P-V matrix and enumeration of Kekul6 structures 393 

3. Every black vertex which is not a valley is given the same label as the white 
vertex immediately beneath it. 

Thus, the g x g matrix M ( G )  has the following properties. 

1. As the degree of any vertex of G is less than or equal to 3, every row (column) 
has at most 3 nonzero elements. In particular, every row (column) of the first t 
rows (columns) has at most 2 nonzero elements. 

2. The diagonal elements in the last g -  t rows (columns), mi~ equal 1 (i-> t + 1). 

3. For the last g - t columns ( j -  t + 1), there are no nonzero elements below the 
diagonal elements. 

Thus, 
F m l l  

m21  

. . .  

/ 'n t l  

M ( G ) =  rn,+~,l 

mr+2,1  

. . .  

. . .  

. rag1 

Now let us transform the determinant 

m12 .. .  m l t  ml,t+l ml,t+2 ml,t+3 

m22 �9 m2t m2,t+l m2,t+2 m2,t+3 

mr2 �9 mtt  ?nt, t+l mr, t+2 mr, t+3 

r o t + l ,  2 m t+l ,  t 1 //'/t + 1,t +2 mt+l , t+3 

m r + 2 ,  2 �9 �9 �9 rot+2, t 1 mt+2,t+ 3 
. . . . . . . . .  

. . . . . . . . .  

m2g �9 mg t 

mlg 

m2g 

mtg  

mt+l ,g  

mt+2,g 

Ynt+3,g 

det M ( G ) .  To begin with consider the g-th 
column (supposing g-> t +  1). In this column, there are other nonzero elements 
than mgg, say, rnpg and mqg (i.e. mpg = mqg = 1). This indicates that the black 
vertex bg is adjacent to three white vertices wg, Wp and wq. By substracting the 
corresponding element values of the gth row from those of the pth row and from 
those of the qth row, we can make all the elements of  the gth column, except 
the diagonal element rngg, become zero. Using the same method, we can then 
make all the elements of  the ( g - 1 ) t h  column except mg_l,g 1 t ransform into 
zero. Continuing with such transformations will finally transform all the elements 
rn o ( i =  1 , 2 , . . . , g ;  j =  t + l ,  t + 2 ' . . . , g )  except for mjj ( j - -  t + l )  into zero. 

Thus 
rhal 

if/21 

tntl 

det M (  G) = m,+1.1 

/~t+2,1 

if/g1 

Y~/12 " ' "  i f / I t  0 0 

rh22 ".. rh2~ 0 0 

rh~2 ... tht~ 0 0 

/ ' h t+ l ,2  " ' "  Yf'lt+l, t 1 

tht+2,2 "" rht+i,t 1 

. . . . . . . . .  0 

/~/g2 " ' "  t ng t  

0 

0 

0 

0 

1 

(8) 
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Fig. 3. Ordinal numbers of white and black vertices of a HF graph 
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2. A KHF  lattice is defined as a KHF graph in which there is a single dominant 
vertex (peak) and a single dominated vertex (valley). Examples of these are 
shown in Fig. 4, and the results are coincident with those given by Gordon and 
Davison [4], and Gutman [22]. 

3. For polymeric systems, such as the tetramer in Fig. 5a and the linear polymer 
made up of 5.6, 12.13-dibenzoperopyene monomeric units in Fig. 5b, we can 
easily obtain kekul6 structure counts. For the former, 

K N ( G )  = 

6 1 

1 6 1 

1 6 

0 

0 

6 1 

1 6 

1 

(13) 

while for the latter, 

K N ( G )  = 

20 

1 

1 

20 1 

1 20 

0 

0 

1 20 1 

1 20 

(14) 
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Fig. $. Polymeric systems 

the results are same as those in the literature [25, 33, 36, 40, 41]. F rom Eqs. (13) 
and (14) we can obtain the following recursion formulae [15, 34, 36]: 

for Fig. 5a, 

K N ( G ) = 6 K N _ I ( G ) - K N _ 2 ( G )  ( N  '->3), (15) 

and 

K I ( G )  = 6; K2(G) = 6 = 35, 
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wh i l e  fo r  Fig.  5b, 

KN(G)=2OKN I(G)-KN-e(G) ( N - >  3), 

a n d  

K I ( G )  = 20; K 2 ( G )  = 2~ 210 = 399. 

In  genera l ,  fo r  the  p o l y m e r i c  sys tem s h o w n  in Fig. 5c 

1 
1 (n;m) 

1 

KN(G) = 

1 

(n;m) 1 

0 

a n d  

KN(O)=('+ m) • K~_~(O)-- K,.~(O) 

K~(G)=(n;m), K 2 ( G )  = 

0 

( N - > 3 ) ,  

1)1 

(16) 

(17) 

(18) 
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