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In this paper, a simple and intuitive proof of the theorem K =|det N(G)|
[1,2] is given.
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1. Introduction

The enumeration of Kekulé structures of benzenoid hydrocarbons has fascinated
many researchers [1-42]. It has been shown that very large benzenoid hydrocar-
bons can be examined by using theories that require only counts of Kekulé
structures as input [43-47]. The considerable number of papers published [18-42]
shows that the interest in this topic has increased substantially during the last
few years.

In the present paper, we give a simple and intuitive proof of the recent result of
John and Sachs [1,2] (K =|det N(G))).

2. Definitions

HF graph [48, 49]. A finite planar connected graph in an infinite regular hexagonal
lattice with vertical edges is called a honeycomb fragment graph (or simply, a
HF graph).

KHF graph [48,49]. If a HF graph is Kekuléan, it is called.a KHF graph. For
a HF graph G(V, E), V(G) is its vertex set and E(G) is its edge set. Every edge
of G has a length 1. Denote the number of elements in the two sets by | V(G)]
and |E(G)|, respectively. Colour the vertices of the hexagonal lattice black -
and white ““0” alternatively such that any two neighbouring vertices have different
colour and every vertical edge has a black upper vertex and a white lower vertex.
Thus, every vertex of a HF graph on the coloured hexagonal lattice is also
coloured. For example, some HF graphs are shown in Fig. 1.
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Fig. 1. HF graphs; peaks and valleys

Peaks and valleys [1, 2, 48, 50]. Consider a HF graph G. A peak is defined as a
vertex lying above all its first neighbours, and a valley is a vertex lying below all
its first neighbours (see Fig. 1). The peaks of G will be denoted by p,, p2, ..., P,
and the valleys of G by vy, v,,..., V.

P-V path [1, 2, 48, 50]. A P-V path in a HF graph is a path issuing from a peak,
running monotonously down, and terminating in a valley.

Conjugated P-V path (or perfect P-V path) [1,2,48,49]. In a given Kekulé
structure of a KHF graph, if a P-V path with A vertices has h/2 conjugated
double bond edges, then it is called a conjugated P-V path. In [50], Sachs
established an one-to-one correspondence between Kekulé structures and perfect
P-V path systems in hexagonal systems.

In [48], we proposed the P-V network flow method, which uses the maximum
flow of the P-V network of a HF graph to determine whether a HF graph possesses
Kekulé structures or not. We should note that a P-V path must have an odd path
length, and so a path issuing from the peak p; and terminating in the valley v
has a path length 2I; — 1, where I; is the number of the diagonal edges in the
P-V path.

If I,; is an even number (i.e. (—1)% =1), then the P-V path is called an even P-V
path, and if I; is an odd number (i.e. (=1)%=—1), then the P-V path is called
an odd P-V path; (—1)% is called the odd-even index of the P~V path. Obviously,
all the possible P-V paths issuing from the peak p; and terminating in the valley
v; have the same path length 21, —1 and the same odd-even index (—1)".

P-V matrix N(G) of G. Consider a HF graph G having peaks p,, p», ..., pr and
valleys vy, 0s,..., Uy. Its P-V matrix is a k X h matrix N(G) with elements n;
(i=1,2,...,k; j=1,2,...,h) equal to the number of the possible P-V paths
issuing from p; (i=1,2, ..., k)andterminatingin v;,(j=1,2, ..., h). Forexample,
in Fig. 2, the P-V matrix N(G) is

16 1 6
NG)=[ 2 2 1 Y]
1 0 2

The value of n; can very easily be determined either by computer or by hands,
with the following method (see Fig. 2). Let the valleys have the values

o @)
0 (s#j)
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Fig. 2. Determination of n;;

and every other vertex have a value equal to the sum of the values of the vertices
which are below and adjacent to it. The obtained peak values are merely the
values n; of the elements in the jth column of N(G).

In the case of h# k, by entering additional rows (or columns) of zero elements,
we can make the kX h P-V matric N(G) become a t x ¢t (t=max (k, h)) square
matrix. From now on, any P-V matrix will be considered as a square one.

Now, let us define another matrix W(G) which has the elements
i (i=1,2,...,5j=1,2,...,01), (3)

where the n;s are the P-V matrix elements, and (—1)" is the odd-even index of
the P-V path issuing from p; and terminating in v; (in the case of n; =0, I is
arbitrary).

wy=(—1)"ixn

3. Determinant of P-V matrix and the proof of John-Sachs theorem
Lemma. For a HF graph, |det N(G)| = |det W(G)|.

Proof. Suppose that all the elements n; in a P-V matrix are not equal to 0.
Consider two P-V paths p;v; and p;v; which have a common end v;. The length
difference of the two P~V paths doesn’t depend on j(j=1,2, ..., t). Neither does
the value I; — I;: the corresponding elements in any two rows (say the ith and
the i’-th rows) of W(G) have the same sign (if (—1)"7/(—1)"~ = 1) or the opposite
sign (if (—1)%/(—1)"=-1).

Although any zero elements (n; =0) in the matrix W(G) have arbitrary signs,
by selecting suitable signs for them we can also make (—1)%/(—1)%/ in depend
of j. So we have

(=D (D=1 (j=1,2,...,1). (4)
Let I'=1. Equation (4) becomes

(=Dl =(-1)* Wl (=12 5 =1,2,...,1)
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and thus,
(-1)nny, (-D'eny, o (=DM,
det W(G) = (-D)ny  (m1)2ny, - (-1)"n,,
(_1)121nt1 (_1)1'2n12 (_l)l"nrr
(_1)111+(111_111)n11 (_1)112"'(111_111)”12 (—1)111"'(111_111)"“
_ (_1)111"'(121’111)”21 (_1)112"'(121*111),122 (—l)I“+(I21_I“)I12t
(_1 I“+(I”_I“)n,1 (_1)112"'(111*[11)”[2 (_1 I1t+(111_111)n"
(-1)'uny,  (=D7eng, - (=) "y,
=(—1)(Z'{=II"1)_'I“>< (_1)1”"21 (“I)I”nzz (_1)I"n2r
i (_I)I”ntl (=Dwn, - (_I)I“nttt
Hence
Ry Ry tor Ny
Ny Ny Ny,
det W(G)=Ax| = Ax (det N(G)),
! n[l e e nlt

where

A= (—])(25:1 Ii1+21"=1 Ilj)_'lll — (_I)Zx!:l In"
John-Sachs theorem. For a HF graph G,

K(G)=|det N(G)l, (5)
where K(G) is the number of kekulé structures of G.

Proof. If in the graph G, the number of the peaks is different from that of the
valleys, we have |det N(G)|=0; obviously, Eq. (5) holds [49, 50].

Now let us consider a HF graph G in which the number of the peaks is equal
to the number of the valleys. From [49, 50], the number of the white vertices
must be equal to the number of the black vertices. According to Ham’s result [5]
which was first proved by Cvetkovi¢ DM, Gutman I and Trinajstié N (see [13]),

K(G) =|det M(G)|, (6)
where M(G) is a g x g matrix with the elements:

I {1 (if w; is adjacent to b;)

710 (if w, is not adjacent to b;)
(i=1,2,...,8j=12,...g g=|V(G)|/2).

For convenience we will adopt the following conventions.
1. The peaks as well as valleys are labelled 1,2, ..., £, and the other white (black)
vertices are labelled t+1, t+2,...,g (g=|V(G)|/2).

2. Thelabels t+1,t+2, ..., g of the white vertices which are not peaks are given
by sweeping from the left to the right and from top to bottom.



P-V matrix and enumeration of Kekulé structures 393

3. Every black vertex which is not a valley is given the same label as the white
vertex immediately beneath it.

Thus, the g X g matrix M(G) has the following properties.

1. As the degree of any vertex of G is less than or equal to 3, every row (column)
has at most 3 nonzero elements. In particular, every row (column) of the first ¢
rows (columns) has at most 2 nonzero elements.

2. The diagonal elements in the last g—¢ rows (columns), m; equal 1 (i=¢+1).

3. For the last g — ¢ columns (j = t+1), there are no nonzero elements below the
diagonal elements.

Thus,
rmn my, my, Myv1 My My o0 me ]
my ny; T ny, My Mpepn My e myg
My my, oo my My, my 4o Ny 3 o mtg
M(G) = Mev1y My My 1 Myi1,042 My 43 0 Mg
Mern1 Myynn o0 My, 1 Myip 443 My e
1 e Myis e
0
| M1 Mg Mg, ]

Now let us transform the determinant det M(G). To begin with consider the g-th
column (supposing g =1t+1). In this column, there are other nonzero elements
than myg,, say, m,, and m,, (i.e. m,, = m, =1). This indicates that the black
vertex b, is adjacent to three white vertices w,, w, and w,. By substracting the
corresponding element values of the gth row from those of the pth row and from
those of the gth row, we can make all the elements of the gth column, except
the diagonal element m,,, become zero. Using the same method, we can then
make all the elements of the (g —1)th column except m,_,,, transform into
zero. Continuing with such transformations will finally transform all the elements
my (i=1,2,...,g; j=t+1,t+2,..., g) except for m; (j=t+1) into zero.

Thus
1y, 1y 1y, 0 0 - - 0
1y My 1y, 0 0 - . 0
1, iy 1, 0 0 - - 0
det M(G) = M1 LHOTSR) n:lt+1,t 1 0 s
My s, myyso s rﬁz+2,t 1
0
Mg, gy, Mg, 1

(8)
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where the magnitude of m; (i=1,2,...,g;j=1,2,...,t)is equal to the number
of possible paths which run down monotonously from the white vertex w;
(i=1,2,...,8) to the valley v; (j=1,2,...,1), and the sign of my is equal to
(—1)", where I;; is the number of the diagonal edges in each path w;v;; obviously

my=wy (i=1,2,...,6,j=1,2,...,1) (9)
Hence,
My My, e 1y, Wi Wi o Wy
det M(G)=|" M2 T M (W Wz W (10)
Wy My e My Wi Wp e Wy
and so
|det M(G)| = |det W(G)|=|det N(G)|. (11)

This completes the proof of the theorem.

4. Applications

1. For the graph G shown in Fig. 3 the vertices are as labelled, and the matrix
M(G) is as follows.

6 0011 00O0O0O0O0O0OCO0O0O0O0OTO0
00 0O0O0CO0OOT1T1D0O0O0O0OO0ODO0OO0OO0
0 000 O0O0O0COO0OO0OO0OO0OOO0OO0OT1 1
06001061 100O0O0DO0O0O0O0O0O0
00 0 01011 00O0O0O0OO0O0O0OO0O0
0000 0T1UO0O0O0OT1T1QO0UO0TU0TU0O0O0
06 0000 01O0O0OO0OT1T1TUO0OUO0OO0O0O0
01 00 00O0O10O0O0O1O0O0O0TO0OQO0
M(G)={01 0 000001 00O0O0O0O0O0TO0TO0 (12)
0000 O0O0OO0OTI1IUO0O0TO0OTI1IO0UO0O0O0
00 0 00 0OO0O0OO0OO0OTI1 O11O0O0O0
0000 O0O0OO0OOO0OOT1TO0T1TUO0TO0OTO0
0000 O0O0OO0OOOOO0OT11O0100
0 00 0 0O0O0OO0O0DO0OOOO0OCO0OT1TTI1TT1O0
10 00 00O0O0OO0OCO0OOOOT1 0O
1010 0 0 0 0 00 O0O0O0O0O0T1O0
LO 010000O0O0O0OO0OOO0OO0OO0O0 1]
From Eq. (5), we immediately obtain
16 1 6
K(G)=|det M(G)|=|det N(G)|=|2 2 1|=49.
0 2
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Fig. 3. Ordinal numbers of white and black vertices of a HF graph

2. A KHEF lattice is defined as a KHF graph in which there is a single dominant
vertex (peak) and a single dominated vertex (valley). Examples of these are
shown in Fig. 4, and the results are coincident with those given by Gordon and
Davison [4], and Gutman [22].

3. For polymeric systems, such as the tetramer in Fig. 5a and the linear polymer
made up of 5.6, 12.13-dibenzoperopyene monomeric units in Fig. 5b, we can
easily obtain kekulé structure counts. For the former,

6 1 0
1 6 1
1 6 1
Kn(G) = . (13)
1 6 1
0 1 6 1
1 6
while for the latter,
20 1 0
1 20 1
1 20 1
KN (G) = s (14)
0 1 20 1
1 20
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Fig. 5. Polymeric systems

the results are same as those in the literature [25, 33, 36, 40, 41]. From Egs. (13)
and (14) we can obtain the following recursion formulae [15, 34, 36]:

for Fig. Sa,
Kn(G)=6Kn_i(G)~Kn_5(G)  (N=3), (15)
and

6 1

=35 -
e

Kl(G)=6; K,(G)= l
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while for Fig. 5b,

Kn(G)=20KyN (G)—Kn2(G)  (N=3), (16)
and
K, (G)=20; K,(G)= '20 1‘ =399,

20

In general, for the polymeric system shown in Fig. 5¢
+
(n m) ) 0
n
(n + m)
n
n+m
C ()
n

Kn(G)= : o , (A7)

and

KN<G>=(”:’”) X Kn1(G)=Kno(G)  (N=3),
(%
1 (n:m)
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